Printed Pages - 7

D-5336

M.Sc. (III ${ }^{\text {rd }}$ Semester) Examination, 2020 MATHEMATICS

(Numerical Analysis - I)

Time Allowed : Three Hours

Maximum Marks : 70

SECTION -A

Note : Attempt all ten questions. Each question carries one mark.
$10 \times 1=10$
Q. 1. Objective Type :

Fill in the blanks :
(i) The finite difference form of $\frac{\partial^{2} u}{\partial x^{2}}=$ \qquad and $\frac{\partial^{2} u}{\partial y^{2}}=$ \qquad -.
(ii) Gauss's forward interpolation formula used when u lies between \qquad and \qquad -.
(iii) The divided differences are \qquad in all their arguments.

D-5336
P.T.O.
(2)
(iv) Stirling's formula is the \qquad of the two Gauss's formula.
(v) The error E in the trapezoidal rule is of the order \qquad .

Choose the correct answer :
(vi) $\Delta^{r} x^{(n)}=0$ if :
(a) $\mathrm{r}<\mathrm{n}$
(b) $r=n$
(c) $r>n$
(d) None of these
(vii) Newton's forward interpolation formula used mainly for interpolating the values of y :
(a) Near the beginning of a set of tabular value
(b) Near the ending of a set of tabular value
(c) Both (a) \& (b)
(d) None of these
(3)
(viii)The divided difference operator Δ is :
(a) Constant
(b) Linear
(c) Quadratic
(d) None of these
(ix) Gauss backward interpolation formula useful when u lies between :
(a) 1 and 0
(b) -1 and 0
(c) -1 and 1
(d) None of these
(x) The sum of Newton's Cotes number is :
(a) 1
(b) -1
(c) 0
(d) None of these
(4)

SECTION - B

Note : Attempt any five questions. Each question carries 2 marks.
$5 \times 2=10$
Q. 2. Very short answer type (25-30 words) :
(1) Define operator E \& write its properties.
(2) Find the error in Newton's interpolating polynomial.
(3) If $u=\frac{x-x_{0}}{n}$, then specify the range for u to obtain better result using Bessel's formula.
(4) Define divided differences and write two properties.
(5) State Stirling's interpolation formula upto the third order difference term.
(6) What are the errors in Trapezoidal and Simpson's rule of numrical integration.
(7) Can you use Lagrange's interpolation formula when $\mathrm{h}=1$.
(5)

SECTION - C

Note : Attempt any five questions. Each question carries

4 marks.
$5 \times 4=20$
Q. 3. Short answer type (250 words) :
(1) Prove that:

$$
\left(\frac{\Delta^{2}}{E}\right) \mathrm{e}^{\mathrm{x}} \cdot \frac{E e^{\mathrm{x}}}{\Delta^{2} \mathrm{e}^{\mathrm{x}}}=\mathrm{e}^{\mathrm{x}}
$$

(2) Represent the function $f(x)=x^{4}+3 x^{3}-5 x^{2}$ $+6 x-7$ in factorial polynomial and their successive forward differences, taking $\mathrm{h}=1$.
(3) Discuss various types of different interpolation methods.
(4) Find $f(x)$ as a polynomial in x from the given data :

x	$:$	3	7	9	10
$f(x)$	$:$	168	120	72	63

(5) Find $f(x)$ by Hermites interpolation from the table :

$$
\begin{array}{ccccc}
\mathrm{x} & : & -1 & 0 & 1 \\
\mathrm{f} & : & 1 & 1 & 3 \\
\mathrm{f}^{\prime} & : & -5 & 1 & 7
\end{array}
$$

(6) Using Bessel's formula find $3 \sqrt{46.24}$ given:

x	$:$	41	45	49	53
$x^{1 / 3}$	$:$	3.4482	3.5569	3.6593	3.7563

(7) Find $y^{\prime}(0) \& y^{\prime \prime}(0)$ from the following table :

\[

\]

Note: Attempt any three questions. Each question carries 10 marks.
$10 \times 3=30$
Q. 4. Essay Type :
(1) From the following data, find y at $x=43$ and $x=84$ by using Gregory-Newton forward and backward interpolation formula :

```
x : }4
y : 184 204 226 250 276 304
```

D-5336
(7)
(2) Apply Gauss's forward interpolation formula to find $y(25)$ for the following data :
x : $20 \quad 24 \quad 28 \quad 32$
y : 2854316235443992
(3) Use Lagrange's interpolation formula to find the value of $f(x)$ corresponding to $x=27$ from the following data ;

| x | $:$ | 14 | 17 | 31 |
| :--- | :--- | :--- | :--- | :--- | 35

$f(x): \begin{array}{llll}68.5 & 64.0 & 44.0 & 39.1\end{array}$
(4) Evaluate $\int_{0}^{6} \frac{\mathrm{dx}}{1+\mathrm{x}^{2}}$ by using Trapezoidal rule taking $\mathrm{h}=1$.

