Printed Pages - 8

D-5338

M.Sc. (IIIrd Semester) Examination, 2020 MATHEMATICS

(Operation Research - I)

Time Allowed : Three Hours

Maximum Marks : 70

SECTION - A

Note : Attempt all ten questions. Each question carries

one mark. 1×10=10

- **Q. 1.** Fill in the blanks :
 - (1) Both objective function and constraints are

expressed in _____ form.

(2) The collection of all feasible solutions is

known as the _____ region.

- (3) The assignment problem is solved by method.
- (4) Transportation problem is basically a _____ model.

		(-)
(5)	'≤' (constraints changes to type in
	dual	L.P.
Mul	ltiple	choice type questions :
(6)	Whil	e solving LP model graphically, the area
	bour	nded by the constraints is called :
	(a)	Unbounded solution
	(b)	Infeasible region
	(c)	Feasible region
	(d)	None of the above
(7)	The	key column indicates :
	(a)	Outgoing variable
	(b)	Incoming variable
	(c)	Independent variable
	(d)	Dependent variable
(8)	The	MODI method is used to :
	(a)	Identify an outgoing arc
	(b)	Identify an incoming arc

(c) Identify unoccupied cells

(2)

(d) Identify and initial feasible solution

D-5338

P.T.O.

D-5338

		(4)					
(9) Northwest	corner rule is one of the method of						
solving :		(5) W	Vhat do	you mear	by	unbalanced	
(a) Queu	ing theory	tra	transportation problem ?				
(b) Trans	sportation models	(6) W	(6) Wha is goal programming?				
(c) Gam	e theory	(7) D	(7) Define slack and surplus variable in L.P.P.				
(10)Dual of a	dual is :		SECTION - C				
(a) Prima	al	Note · Attem	Note : Attempt any five questions. Each question carrie				
(b) Dual							
(c) Prima	a Dual	4 mar	rks.			5×4=20	
(d) None	e of the above	Q. 3. Short	answer typ	be (250 word	ds) :		
S	SECTION - B	(1) S	olve graphi	cally :			
Note: Attempt any five questions. Each question carries		Μ	Max. $z = 45x_1 + 80x_2$				
2 marks.	5×2=10	SI	ubject to 5x	$x_1 + 20x_2 \le$	400		
Q. 2. (1) Define convex set.			$10x_1 + 15x_2 \le 450$				
(2) Write two application of assignment problem.			' <u>-</u>				
(3) Comment on scientific method of O.R.			and $x_1 \ge 0, x_2 \ge 0$				
(4) What do y	ou mean by unbounded solution in	(2) E	xamine the	convexity o	f the s	et :	
L.P.P. ?		S	$\mathbf{S} = \left\{ \left(\mathbf{x}_1, \mathbf{x}_2 \right); \right.$	$x_1^2 + x_2^2 \le 1, x_2$	$+x_2 \ge$	1}	
D-5338	P.T.O.	D-5338					

(5)

- (3) Solve the following L.P.P. by using two phase method : Min. $z = x_1 + x_2$ subject to $2x_1 + x_2 \ge 4$ $x_1 + 7x_2 \ge 7$ $x_1, x_2 \ge 0$
- (4) Solve the following assignment problem and find optimal solution :
 - Task 2 3 4 1588624658361074 4 9 973
- (5) Describe northwest corner method of transportation problem.
- (6) An office equipment manufacture, produces two kinds of products, chairs and lamps. Production of either a chair or a lamp

requires 1 hour of production capacity in the plant. The plant has a maximum capacity of 10 hours per week. The gross margin from the sale of a chair is Rs. 80 and Rs. 40 for that of a lamp. Formulate the problem as a goal programming problem if the goal of the firm is to earn a profit of Rs. 800 per week.

(7) Write the dual of the following primal LP problem :

Maximize $z = x_1 + 2x_2 + x_3$ subject to $2x_1 + x_2 - x_3 \le 2$ $2x_1 - x_2 + 5x_3 \le 6$ $4x_1 + x_2 + x_3 \le 6$ $x_1, x_2, x_3 \ge 0$ **SECTION - D** Note: Attempt any three questions. Each question

carries 10 marks. 3×10=30

D-5338

P.T.O.

D-5338

(7)

Q. 4. (1) Solve the following L.P.P. problem : Maximize $z = 3x_1 + 5x_2 + 4x_3$ subject to $2x_1 + 3x_2 \le 8$ $2x_2 + 5x_3 \le 10$ $3x_1 + 2x_2 + 4x_3 \le 15$ and $x_1, x_2, x_3 \ge 0$ (2) Solve the following L.P. problem : Maximize $z = x_1 + 2x_2 + 3x_3 - x_4$ subject to $x_1 + 2x_2 + 3x_3 = 15$ $2x_1 + x_2 + 5x_3 = 20$ $x_1 + 2x_2 + x_3 + x_4 = 10$ $x_1, x_2, x_3, x_4 \ge 0$ (3) For the following L.P.P. : Minimize $z = \lambda x_1 - \lambda x_2 - x_3 + x_4$

winimize $z = \lambda x_1 - \lambda x_2 - x_3 + x_4$ subject to $3x_1 - 3x_2 - x_3 + x_4 \ge 5$ $2x_1 - 2x_2 + x_3 - x_4 \le 3$ $x_1, x_2, x_3, x_4 \ge 0$

Find the range of $\boldsymbol{\lambda}$ over which the solution

remain basic feasible and optimal.

(4) Solve the following transportation problem

and apply the test of optimality :

D-5338