I-1045

M.A./M.Sc. (Previous) Examination, 2020 MATHEMATICS

Paper - II
(Real Analysis and Measure Theory)
Time Allowed : Three Hours
Maximum Marks : 100
Minimum Pass Marks : 36

Note : Attempt any five questions. All questions carry equal marks.
Q. 1. (a) Prove that $f \in R(\alpha)$ on $[a, b]$ if and only if for revery $\in>0$ there exists a partition P such that $U(P, f, \alpha)-L(P, f, \alpha)<\epsilon$.
(b) If $f \in R$ on $[a, b]$ and if there is a differentiable function F on $[a, b]$ such that $F^{\prime}=f$, then prove that $\int_{a}^{b} f(x) d x=F(b)-F(a)$.
(2)
Q. 2. Assume α increases monotonically and $\alpha^{\prime} \in R$ on $[\mathrm{a}, \mathrm{b}]$. Let f be a bounded real function on $[\mathrm{a}$, b]. Then prove that $f \in R(\alpha)$ if and only if $f \alpha^{\prime} \in$ R.
Q. 3. (a) Suppose $\left\{f_{n}\right\}$ is a sequence of functions defined on E, and suppose $\left|f_{n}(x)\right| \leq M_{n}(x \in$ E, $\mathrm{n}=1,2,3, \ldots \ldots .$.$) , then prove that \sum \mathrm{f}_{\mathrm{n}}$ converges uniformly on E if $\sum M_{n}$ converges.
(b) If K is a compact metric space, if $\mathrm{f}_{\mathrm{n}} \in \ell(\mathrm{k})$ for $n=1,2,3, \ldots \ldots \ldots$. and if $\left\{f_{n}\right\}$ converges uniformly on K, then prove that the $\left\{f_{n}\right\}$ is equicontinuous on K .
Q. 4. Let $\left\{f_{n}\right\}$ is a sequence of functions, differentiable on [a, b] and such that $\left\{f_{n}\left(x_{0}\right)\right\}$ converges for some point x_{0} on $[a, b]$. If $\left\{f_{n}^{\prime}\right\}$ converges

I-1045
uniformly on $[\mathrm{a}, \mathrm{b}]$, then prove that the $\left\{\mathrm{f}_{\mathrm{n}}\right\}$ converges uniformly on $[a, b]$ to a function f and :

$$
f^{\prime}(x)=\lim _{n \rightarrow \infty} f_{n}^{\prime}(x)(a \leq x \leq b)
$$

Q. 5. (a) Prove that every uniformly sequence of bounded functions is uniformly bounded.
(b) State and prove Abel's theorem.
Q. 6. Let $\sum C_{n}$ converges. Put $f(x)=\sum_{n=0}^{\infty} C_{n} x^{n}(-1<x<1)$ then prove that:

$$
\lim _{x \rightarrow 1} f(x)=\sum_{n=0}^{\infty} C_{n}
$$

Q. 7. (a) Prove that a linear operator A on a finite dimensional vector space X is one to one if and only if the range of A is all of X.
(b) Let f maps on open set $E \subset R^{n}$ into R^{m}. Then prove that $f \in e^{\prime}(E)$ if and only if the partial

