Printed Pages - 4

I-1045

M.A./M.Sc. (Previous) Examination, 2020 MATHEMATICS

Paper - II

(Real Analysis and Measure Theory)

Time Allowed : Three Hours

Maximum Marks : 100

Minimum Pass Marks : 36

Note : Attempt any five questions. All questions carry

equal marks.

Q. 1. (a) Prove that $f \in R(\alpha)$ on [a, b] if and only if for

revery \in > 0 there exists a partition P such

that U(P, f, α) – L(P, f, α) < \in .

(b) If $f \in R$ on [a, b] and if there is a

differentiable function F on [a, b] such that

F' = f, then prove that
$$\int_a^b f(x)dx = F(b) - F(a)$$
.

I-1045

P.T.O.

(2)

Q. 2. Assume α increases monotonically and $\alpha' \in R$ on [a, b]. Let f be a bounded real function on [a, b]. Then prove that $f \in R(\alpha)$ if and only if $f \alpha' \in R$.

Q. 3. (a) Suppose $\{f_n\}$ is a sequence of functions defined on E, and suppose $|f_n(x)| \le M_n$ (x \in

E, n = 1, 2, 3,), then prove that Σf_n

converges uniformly on E if $\Sigma \mathrm{M_n}$ converges.

- (b) If K is a compact metric space, if $f_n \in \mathcal{L}(k)$ for n = 1, 2, 3, and if $\{f_n\}$ converges uniformly on K, then prove that the $\{f_n\}$ is equicontinuous on K.
- **Q. 4.** Let $\{f_n\}$ is a sequence of functions, differentiable on [a, b] and such that $\{f_n(x_0)\}$ converges for some point x_0 on [a, b]. If $\{f'_n\}$ converges

I-1045

(3)

uniformly on [a, b], then prove that the $\{f_n\}$ converges uniformly on [a, b] to a function f and :

$$f'(x) = \lim_{n \to \infty} f'_n(x) (a \le x \le b)$$

- Q. 5. (a) Prove that every uniformly sequence of bounded functions is uniformly bounded.
 - (b) State and prove Abel's theorem.

Q.6. Let
$$\sum C_n$$
 converges. Put $f(x) = \sum_{n=0}^{\infty} C_n x^n (-1 < x < 1)$

then prove that :

$$\lim_{x\to 1} f(x) = \sum_{n=0}^{\infty} C_n$$

Q. 7. (a) Prove that a linear operator A on a finite dimensional vector space X is one to one if and only if the range of A is all of X.
(b) Let f maps on open set E ⊂ Rⁿ into R^m. Then

prove that $f\in {\mathscr C}'(E)$ if and only if the partial

derivatives D_if_i exist and are continuous on E

for $1 \le i \le m$, $1 \le j \le n$.

- **Q. 8.** State and prove Stoke's theorems.
- **Q. 9.** State and prove Lebesgue's dominated convergence theorem.
- **Q. 10.** (a) Prove that BA is linear if A and B are linear transformations.
 - (b) If f is a differentiable mapping of a connected

open set $E \subset R^n$ into R^m and if f'(x) = 0 for

every $x \in E$. Prove that f is constant in E.

I-1045