Printed Pages - 7

D-5332

M.Sc. (IIIrd Semester) Examination, 2020

MATHEMATICS

(Partial Differential Equations and Mechanics - I)

Time Allowed : Three Hours

Maximum Marks : 70

Note : Attempt guestions from all four sections as directed. Distribution of marks is given with each section.

SECTION - A

- Note: Attempt all questions of this section. Each question carries one mark. 10×1=10
- **Q. 1.** Fill in the blanks type questions :
 - (i) The general theory of solutions to Laplace's equation is known as _____. (Potential theory / Laplacian operator theory)
 - (ii) Method to find the solution of a PDE by converting it into ODE is called (Method of characteristics / energy method)

equation for potential) (vi) Possible solution of equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ is :

- (a) $u = (c_1 \cos px + c_2 \sin px) (c_3 e^{py} + c_4 e^{-py})$
- (b) $u = (c_1 e^{px} + c_2 e^{-px}) (c_3 \cos py + c_4 \sin py)$
- (c) $u = (c_1x + c_2) (c_3y + c_4)$
- All of these (d)

D-5332

P.T.O.

D-5332

(2)

(iii) $u_t - \Delta u = 0$ is called _____.

(the heat equation / the wave equation)

(iv) $u_{tt} - \Delta u = 0$ is called _____.

(the heat equation / the wave equation)

(v) $\nabla^2 V = 0$ is known as _____, where V is the

potential of the system of attracting particles.

(Poisson's equation for potential / Laplace

Multiple choice type questions.

Choose the correct alternative :

(vii) One dimensional wave equation is :

(a)
$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$

(b) $\frac{\partial^2 u}{\partial t^2} = -c^2 \frac{\partial^2 u}{\partial x^2}$
(c) $\frac{\partial^2 u}{\partial t^2} = \frac{1}{c^2} \frac{\partial^2 u}{\partial x^2}$
(d) $\frac{\partial^2 u}{\partial t^2} = -\frac{1}{c^2} \frac{\partial^2 u}{\partial x^2}$

(viii) Poisson equation is an example of :

- (a) Elliptic PDE
- (b) Hyperbolic PDE
- (c) Parabolic PDE
- (d) None of these
- (ix) If a point is inside the spherical shell of radius a and mass M then the attractive at that point will be :

(b)
$$\frac{M}{a^2}$$

P.T.O.

- (c) $\frac{M}{2a^2}$
- (d) None of these
- (x) Attraction at any point P on the axis of a uniform circular disc of infinite radius is :

(b)
$$\frac{2W}{a^2}$$

(c) $\frac{M}{2}$

(d) None of these

SECTION - B

- Note : Attempt any five questions. Each question carries
 - 2 marks. 5×2=10
- **Q. 2.** Very short answer type questions (25-30 words) :
 - (i) What is Laplace equation ? What is it used for ?
 - (ii) Define Legendre transform.
 - (iii) Solve PDE yzp + zxq = xy.
 - (iv) What is Euler-Lagrange equation ?

D-5332

(5)

(v) What is variational principle ?

- (vi) What is method of characteristics ?
- (vii) What is a Riemann's problem ? Where are they useful ?

SECTION - C

Note : Attempt any five questions. Each question carries

4 marks. 5×4=20

- Q. 3. Short answer type questions (250 words) :
 - (i) Discuss physical interpretation of Laplace equation.
 - (ii) Find mean value formula for heat equation.
 - (iii) Solve using characteristics :

 $x_1u_{x_1} + x_2u_{x_2} = 2u, u(x_1, 1) = g(x_1)$

- (iv) Find a function to satisfy transport equation $u_t + cu_x = 0$ and initial condition u(x, 0) = f(x). C is a fixed constant.
- (v) Find the solution of IVP

 $\begin{cases} u_t + b Du = 0 & \text{in} \quad \mathbb{R}^n \times (0, \infty) \\ u = g & \text{on} \quad \mathbb{R}^n \times \{t = 0\} \end{cases}$

Here $b \in R^n$ and $g : R^n \rightarrow R$ are known.

(6)

- (vi) Find the potential at an external point due to a uniform straight rod.
- (vii) Find Poisson's equation for potential of a system of attracting particles.

SECTION - D

- Note : Attempt any three questions. Each question
 - carries 10 marks. 3×10=30
- Q. 4. Essay type questions (more than 500 words) :
 - (i) Find the fundamental solution of the heat

equation $u_t - \Delta u = 0$.

- (ii) Prove that $u(x, t) = G\left(\frac{x y(x, t)}{t}\right)$ for a.e.x. in
 - an integral solution of I.V.P. for scalar conservation laws in one space dimension :

$$\begin{cases} u_{t} + F(u)_{x} = 0 & \text{in} \quad R \times (0, \infty) \\ u = g & \text{on} \quad R \times \{t = 0\} \end{cases}$$

Here $F : R \to R$ and $g : R \to R$ are given and u : R × (0, ∞) \to R is unknown, u = u(x, t).

D-5332

P.T.O.

D-5332

(7)

- (iii) Find attraction at any point on the axis of a uniform circular disc.
- (iv) Find the attraction of a spherical shell of radius a at a point P at a distance r from the centre O of the shell.