Printed Pages – 8	(2)		
D-6321		(ii) How many microstates are possible for a d^2	
M.Sc. (II nd Semester) Examination, 2020 CHEMISTRY		configuration including both weak and strong	
(Inorganic Chemistry - II)	field limits ?		
Time Allowed : Three Hours		(a) 15	
Maximum Marks : 70 SECTION - A		(b) 45	
Note : Attempt any ten questions. Each question carries		(c) 10	
one mark.	1×10=10	(d) 90	
Q. 1. (i) A d ¹ electron configuration corre	esponds to	(iii) Structure of a carborane with formula	
which of the following term ?		$C_2B_4H_8$ is formally derived from :	
(a) D ²		(a) Closo-borane	
(b) D ¹		(b) Nido-borane	
(c) ² P		(c) Arachno-borane	
(d) ³ P		(d) Conjuncto-borane	
D-6321	P.T.O.	D-6321	

(3	۱
٠.	J	,

(iv)	Wh	at is the pH of 0.0001 molar HCl solution ?	(vii)	Whic	h of the following has square planar
	(a)	1		struct	ure :
	(b)	2		(a) [[Ni Cl ₄] ^{2–}
	(c)	3		(b) [[Ni (CO) ₄]
	(d)	4		(c) [[Ni (CN) ₄] ^{2–}
(v)	Wh	ich metal is present in cyanocobalamin ?		(d) I	None of these
	(a)	Co	(viii)	A stro	ong acid is same as concentrated acid :
	(b)	Са		(a) I	False
	(c)	Mg		(b) -	Truc
	(d)	Cu	<i>4</i>	(D)	
(vi)	Car	boxy peptidase contains :	(ix)	In ch	lorophyll metal ion is present :
	(a)	Zn (II) and hydrolysis CO ₂		(a) I	Na
	(b)	Mg (II) and hydrolysis CO ₂		(b) (Са
	(c)	Zn (II) and hydrolysis peptide bond		(c) I	Mg
	(d)	Mg (II) and hydrolysis peptide bond		(d) (Cu
D-6321		P.T.O. D-	6321		

(4)

(5)

- (x) The number of 3c-2e bonds present in $AI(BH_4)_3$ is _____.
- (xi) The reaction between an acid and base is called _____.
- (xii) The first talk about nanotechnology was given by _____.

SECTION - B

Note : Attempt any five questions. Each question carries

two marks. 5×2=10

- Q. 2. Very short answer type (25-30 words) :
 - (i) What is spectroscopic ground state ?
 - (ii) Give the example of carborane and metal carbonyl.
 - (iii) Write the structure of Mn₂(CO)₁₀ metal carbonyl.
 - (iv) Explain symbiosis with example.
- D-6321

(6)

- (v) Name two widely distributed oxygen carrier proteins.
- (vi) Define EAN rule and give example.
- (vii) Write the use of lanthanide compound as shift reagents.

SECTION - C

- Note : Attempt any five questions. Each question carries
 - 4 marks. 5×4=20
- Q. 3. Short answer type (250 words) :
 - Draw combined orgel diagram for d¹, d⁴
 complexes.
 - (ii) Explain HSAB principle. Discuss its application.
 - (iii) What are the functions of haemoglobin and myoglobin? What are similarities and differences in the structures?

P.T.O. D-6321

(7)

- (iv) Discuss the bonding in metal carbonyl complexes, its nature of bonding. Explain.
- (v) What are the factors which effect the stability of complex ? Discuss.
- (vi) Discuss the preparation and structure of metallo carboranes.
- (vii) Write short notes on oxidation state of lanthanides.

SECTION - D

- Note : Attempt any three questions. Each question carries 10 marks. 10×3=30
- Q. 4. Essay type (more than 500 words) :
 - (i) What do you mean by Tanabe Sugano
 diagram? Explain for transition metal
 complexes d¹ to d⁹ state.

(8)

- (ii) (a) What is nitrogenase ? What role does itplay in nitrogen fixation ?
 - (b) Write notes on colour and spectral, magnetic properties of lanthanide and actinide.
- (iii) (a) Give a brief account of Optical Rotator Dispersion (ORD).
 - (b) Write and explain Lewis acid base concept and its application.
- (iv) (a) What are nanomaterials? Its characterization & application of

nanotechnology.

(b) Write notes on spin orbital coupling.

D-6321

P.T.O.

D-6321

100