I-1059

M.A./M.Sc. (Final) Examination, 2020

MATHEMATICS

Paper - VII

(Fuzzy Sets and Their Application)

Time Allowed : Three Hours

Maximum Marks : 100

Minimum Pass Marks : 36

Note : Attempt any five questions. All questions carry

equal marks.

- Q. 1. Define following terms with example (any five) :
 - (i) Fuzzy sets
 - (ii) α -cut of a fuzzy set
 - (iii) Cutworthy and strong cutworthy property
- I-1059

P.T.O.

I-1059

(2)

(iv) Standard fuzzy complement

(v) Normal and subnormal fuzzy sets

(vi) Degree of subsethood

Q. 2. (a) State and prove second decomposition

theorem.

(b) Let $f : X \to Y$ be an arbitrary crisp function.

Then prove that, for any $A \in F(X)$, f fuzzified

by the extension principle satisfies the

equation :

$$f(A) = \bigcup_{\substack{\alpha \in [b, 1]}} f(\alpha + A)$$

(3)

Q. 3. (a) If C is continuous fuzzy complement then show that C has a unique equilibrium.
(b) Let i be a t-norm and C be an involutive fuzzy complement. Then show that the binary operation U on [0, 1] defined by :
U(a, b) = C (i(c(a), c(b))) is a t-conorm.
Q. 4. State and prove first characterization theorem for

fuzzy complement.

Q. 5. (a) Solve the fuzzy equation

A + X = B

P.T.O.

I-1059

if	$A = \frac{\cdot 2}{[0,1)} + \frac{\cdot 1}{(5,6]}$	$-\frac{\cdot 6}{\left[1,2\right)}+$	$\frac{\cdot 8}{\left[2,3\right)}+$.9 [3,4) +	$-\frac{1}{4}+\frac{1}{(}$	5 4,5]
	$B = \frac{\cdot 1}{\left[0,1\right)} +$	$\frac{\cdot 2}{[1,2)}$ +	$\frac{\cdot 6}{\left[2,3\right)}$ +	$\frac{.7}{[3,4)}$ +	- <u>·8</u> [4,5)	+
[5	$\frac{9}{6} + \frac{1}{6} + \frac{1}{6}$	$\left[\frac{5}{5,7}\right]^{+}\frac{1}{(7)}$	$\frac{4}{(8)} + \frac{1}{(8)}$	$\frac{2}{3,9} + \frac{1}{9}$	·1),10]	

(b) Solve the fuzzy equation

 $A \cdot X = B$

 $\label{eq:and_states} \text{if} \quad A\left(x\right) = \begin{cases} 0 & \text{for} & x \leq 3 \text{ and } x > 5 \\ x-3 & \text{for} & 3 < x \leq 4 \\ 5-x & \text{for} & 4 < x \leq 5 \end{cases}$

	ſ		
	0	for	$x\leq 12, x>32$
$B(x) = \langle$	$\frac{x-12}{8}$	for	$12 < x \leq 20$
	$\frac{32-x}{12}$	for	$20 < x \leq 32$

(5)

Q. 6. (a) Check whether the following relation :

 $R(X,X) = \begin{cases} a & b & c & d \\ 1 & \cdot 8 & 0 & \cdot 4 \\ b & \cdot 8 & 1 & 0 & \cdot 4 \\ c & 0 & 0 & 1 & 0 \\ d & \cdot 4 & \cdot 4 & 0 & 1 \end{bmatrix}$

is an equivalence relation, where $X = \{a, b, c, d\}$.

- (b) Write short notes on fuzzy morphism.
- **Q. 7.** (a) If R is any fuzzy relation on X^2 then prove

that the fuzzy relation

$$R_{T(i)} = \bigcup_{n=1}^{\infty} R^{(n)}$$

is the i-transitive closure of R.

(b) For any a, a_i , b, d \in [0, 1], show that :

(i) $i(a, b) \leq d \text{ iff } w_i(a, d) \geq b$

(6) (ii) $W_i \begin{bmatrix} \sup_{j \in J} a_j, b \end{bmatrix} = \inf_{i \in J} W_i(a_j, b)$ Q.8. (a) Show that every possibility measure Pos on a finite power set P(X) is uniquely determined by a possibility distribution function : $r: X \rightarrow [0, 1]$ via the formula Pos (A) = $\max_{x \in A} r(x)$ for each $A \in P(X)$

(b) Prove that a belief measure Bel on a finite

power set P(X) is a probability measure if

and only if the associated basic probability

I-1059

P.T.O.

I-1059

(7)

assignment function m is given by $m({x}) =$

Bel $({x})$ and m(A) = 0 for all subsets of X

that are not singletons.

- Q. 9. Write short notes on fuzzy quantifiers.
- Q. 10. Write short notes on :
 - (i) Multiperson decision making
 - (ii) Fuzzy linear programming