D-5345

M.A./M.Sc. (IV ${ }^{\text {th }}$ Semester) Examination, 2020

 MATHEMATICS
(Numerical Analysis - II)

Time Allowed : Three Hours

Maximum Marks : 70

SECTION - A

Note : Attempt all ten questions. Each question carries one mark.
Q. 1. Objective type :
(i) The difference equation $\Delta \mathrm{y}_{\mathrm{k}}-2 \mathrm{y}_{\mathrm{k}}=3$ can be written in subscript notation as :
(a) $y_{k+1}-3 y_{k}=0$
(b) $\mathrm{y}_{\mathrm{k}+2}-2 \mathrm{y}_{\mathrm{k}}=0$
(c) $\mathrm{y}_{\mathrm{k}+1}+2 \mathrm{y}_{\mathrm{k}}=3$
(d) $y_{k+1}-3 y_{k}=3$
(ii) The solution of the linear difference equation $y_{k+1}-a y_{k}=0, a \neq 1$ is :
(a) $y_{k}=c a^{k}$
(b) $y_{k+1}=c a^{k+1}$
(c) $y=c a^{k}$
(d) $y_{k+1}=c a^{k+1}$
(iii) The order and degree of the difference equation $y_{k+2}-2 y_{k+1}=y_{k}=c$ is :
(a) 2, 1
(b) 0,2
(c) 2, 2
(d) 1,1
(iv) The generating function of the sequence $0,1,2,3$, \qquad ∞ is :
(a) $\mathrm{t}(1-\mathrm{t})^{-3}$
(b) $(1-t)^{-1}$
(c) $(1-t)^{-2}$
(d) $\mathrm{t}(1-\mathrm{t})^{-2}$
(3)
(v) Newton's iterative formula for obtaining a^{-1} is :
(a) $x_{n+1}=x_{n}\left(2-a x_{n}\right)$
(b) $x_{n+1}=x_{n}\left(1-a x_{n}\right)$
(c) $x_{n+1}=x_{n}\left(2+a x_{n}\right)$
(d) $x_{n+1}=x_{n}\left(1+a x_{n}\right)$
(vi) One root of the equation $x^{3}-x-1=0$ lies between :
(a) 0 and 1
(b) 2 and 3
(c) 1 and 2
(d) None of these
(vii) In Runge-Kutta method, value of k_{2} is:
(a) $h f\left(x_{0}, y_{0}\right)$
(b) $\quad h f\left(x_{0}+\frac{h}{2}, y_{0}+\frac{k_{3}}{2}\right)$
(c) $h f\left(x_{0}+\frac{h}{2}, y_{0}+\frac{\mathrm{k}_{1}}{2}\right)$
(d) $h f\left(x_{0}-\frac{h}{2}, y_{0}-\frac{\mathrm{k}_{3}}{2}\right)$
(4)
(viii) The solution of simultaneous linear algebraic equation can not be found by :
(a) Gauss-Seidel method
(b) Gauss-Jordan method
(c) Gauss-Elimination method
(d) None of these
(ix) Which of the following is a direct method:
(a) Relaxation method
(b) Gauss-Seidel method
(c) Crout's method
(d) None of these
(x) Relaxation method converges \qquad in comparison to Gauss-Seidel iterative method :
(a) Less rapidly
(b) Remains constant
(c) More rapidly
(d) None of these

(5)
 SECTION - B

Note : Attempt any five questions. Each question carries 2 marks.
Q. 2. Very short answer type ($25-30$ words) :
(i) Solve the difference equation :

$$
y_{k+2}-2 y_{k+1}+5 y_{k}=0
$$

(ii) Write the types of iterative method.
(iii) Write the method of iteration.
(iv) Find $\frac{1}{\mathrm{E}^{2}-6 \mathrm{E}+8}\left(3 \mathrm{k}^{2}+2\right)$.
(v) Solve the difference equation :
$9 y_{k+2}-6 y_{k+1}+y_{k}=0$
(vi) The equation $x^{6}-x^{4}-x^{3}-1=0$ has one real root between (1.4, 1.5), find this root to three decimal places by false position method.
(vii) Solve $x=0.21 \sin (0.5+x)$ by iteration method starting with $\mathrm{x}_{0}=0.12$.
(6)

SECTION - C
Note : Attempt any five questions. Each question carries 4 marks.
Q. 3. Short answer type (250 words) :
(i) Solve :
$\mathrm{y}_{\mathrm{k}+2}-3 \mathrm{y}_{\mathrm{k}+1}+2 \mathrm{y}_{\mathrm{k}}=2^{\mathrm{k}}$
(ii) Use Picard's method to approximate the value of y when $\mathrm{x}=0.1$, given that $\mathrm{y}=1$ when $x=0$ and

$$
\frac{d y}{d x}=\frac{y-x}{y+x}
$$

(iii) Find a root of the equation $f(x)=x^{3}-4 x-9=0$ using the bisection method in four iterations.
(iv) Use Runge's method to approximate y when $x=1.1$, given that $y=1.2$ at $x=1$ and

$$
\frac{d y}{d x}=3 x+y^{2}
$$

(v) Use Euler's method with $\mathrm{h}=0.1$ to find the solution of $\frac{d y}{d x}=x^{2}+y^{2}, y(0)=0$ in the range $0 \leq x \leq 0.5$.
(7)
(vi) Solve by Gauss's elimination method the following:

$$
\begin{aligned}
& 6 x+3 y+2 z=6 \\
& 6 x+4 y+3 z=0 \\
& 20 x+15 y+12 z=0
\end{aligned}
$$

(vii) Obtain $\sqrt{12}$ to five places of decimals by Newton's Raphson method.

SECTION - D

Note : Attempt any three questions. Each question carries 10 marks.
Q. 4. Essay type (more than 500 words) :
(i) Solve the following equations by Crout's method :

$$
\begin{aligned}
& x+2 y+3 z=6 \\
& 2 x+3 y+z=9 \\
& 3 x+y+2 z=8
\end{aligned}
$$

(ii) Solve by Jacobi method:

$$
\begin{aligned}
& 20 x+y-2 z=17 \\
& 3 x+20 y-z=-18 \\
& 2 x-3 y+20 z=25
\end{aligned}
$$

(8)
(iii) Find $y(2)$ if $y(x)$ is the solution of $\frac{d y}{d x}=\frac{x+y}{2}$, assuming $y(0)=2, y(0.2)=2.636, y(1.0)=$ 3.595 and $\mathrm{y}(1.5)=4.968$ using Milne's method.
(iv) Using Picard's method of successive approximation, obtain a solution upto the fifth approximation of the equation :

$$
\frac{d y}{d x}=y+x, y(0)=1
$$

