Printed Pages – 8					(2)	
	D-6343			(a)	Conductor	
M.Sc. (IV th Semester) Examination, 2020				(b)	Insulator	
	CHEMISTRY			(c)	Semiconductor (p-type)	
(Solid State Chemistry)				(-1)		
Time Allowed : Three Hours				(a)	Semiconductor (n-type)	
Maximum Marks : 70			(iii)	An	example of ionic crystal is :	
	SECTION - A			(a)	NaCl crystal	
Note: Attempt any ten questions. Each question carries				(b)	Graphite	
one	e mark.	1×10=10		(c)	Ice	
Q. 1. (i)	Pure silicon doped with phosphore	us is a :		(d)	Cu-crystal	
	(a) Metallic conductor		(iv)	An	example of molecular solid is :	
	(b) p-type conductors		()	<i>(</i>)		
	(c) n-type semiconductor			(a)	Solid CO2	
	(d) Insulator			(b)	SiO ₂	
(ii)	At a temperature of absolute	zero, an		(c)	NaCl	
	intrinsic semiconductor is :			(d)	SiC	
D-6343		P.T.O.	D-6343			

(3)

(v) Which of the following statement is	(b) MgO
appropriate for Stockbarger method ?	(c) SO ₂ (s)
(a) Solidification is achieved by passing the	(d) CrO ₂
melt through a concentration gradient.	(vii) Which of the following point defects are
(b) Solidification is achieved by passing the	shown by AgBr(s) crystals ?
melt through a temperature gradient.	(1) Schottky defect
(c) Liquefaction is achieved by passing the	(2) Frenkel defect
melt through a concentration gradient.	(3) Metal excess defect
(d) Liquefaction is achieved by passing the	(4) Metal deficient defect
melt through a temperature gradient.	(a) 1 and 2
(vi) Which of the following oxide shows electrical	(b) 3 and 4
properties like metals ?	(c) 1 and 3
(a) SiO ₂	(d) 2 and 4

D-6343

P.T.O.

D-6343

(4)

(5)

(viii) Amorphous solid can also be called _____.

- (ix) Frenkel defect is also known as _____.
- (x) Graphite is a good conductors of electricity

due to the pesence of _____.

(xi) The ratio of the intensity of magnetization I

to the magnetizing field H is called magnetic

(xii) X-rays are _____ of wavelength ~ 1A°

(10⁻¹⁰m).

SECTION - B

Note : Attempt any five questions. Each question carries

2 marks. 2×5=10

- Q. 2. Very short answer (25-30 words) :
 - (i) What is crystal growth ?
- D-6343 P.T.O.

(6)

- (ii) Write the F-centre and hole centre with example.
- (iii) Write the equation of Bragg equation.
- (iv) What is ionic crystal ?
- (v) What is magnetic moments ?
- (vi) What is insulators with example?
- (vii) What is meant by zone melting?

SECTION - C

- Note : Attempt any five questions. Each question carries
 - 4 marks. 5×4=20
- Q. 3. Write short answer in 250 words :
 - (i) What is super conductivity ? How would you

explain super conductivity of metals?

 Write the principle and application of powder method.

D-6343

(7)

- (iii) Distinguish between a Schottky and Frenkel defects.
- (iv) What are n-p type semiconductor ? Explain the fabrication of transistors.
- (v) Describe the Hydogen-Oxygen cell and its applications.
- (vi) Explain the Curie and Curie-Weiss laws.
- (vii) Discuss the Kroger-Zeigler equation.

SECTION - D

- Note : Attempt any three questions. Each question
 - carries 10 marks. 10×3=30
- Q. 4. Write essay type answer in 500 words :
 - (i) Discuss the principle, instrument and application of Neutron diffraction.

- (ii) (a) Describe the origin, consequences of non-stoichiometry defects.
 - (b) Write notes on Band theory of solid.
- (iii) What is solid electrolytes ? Discuss the solid

electrolyte and its application.

(iv) Write the behaviour of substance in

magnetic field and mechanism of ferro and antiferro magnetic.

- (v) Write the short notes on :
 - (i) Parabolic rate law
 - (ii) Organic conductors
 - (iii) Extrinsic semiconductors

D-6343

P.T.O.

D-6343

100