D-5343

M.A./M.Sc. (IV ${ }^{\text {th }}$ Semester) Examination, 2020 MATHEMATICS
 (Operation Research - II)
 Time Allowed : Three Hours
 Maximum Marks : 70
 Minimum Pass Marks : 25
 SECTION - A

Note : Attempt all ten questions. Each question carries one mark.
$1 \times 10=10$
Q. 1. Objective type :

Fill in the blanks :
(i) ___ is used for project involving activities of repetitive nature.
(ii) The games with saddle points are \qquad in nature.

D-5343 P.T.O.
(iii) If the coefficient of each squared term in a quadratic function is positive, the function is
\qquad -.
(iv) A symmetric procedure for solving an all integer programming problem was first developed by \qquad .
(v) Dynamic programming was developed by
\qquad -.

Multiple choice type questions:
(vi) A convex function is:
(a) Bowl-shaped up
(b) Bowl-shaped down
(c) Elliptical in shape
(d) Sinusoidal in shape

D-5343
(3)
(vii) Each activity is represented by a directed :
(a) Arc
(b) Line
(c) Path
(d) None of these
(viii) The critical path identifies all the critical activities of the :
(a) Project
(b) Event
(c) Activity
(d) None of these
(ix) When the game is not having a saddle point, then the following method is used to solve the game :
(a) Linear programming method
(b) Minimax and maximin criteria
(c) Algebraic method
(d) Graphical method
(4)
(x) Branch \& bound technique was developed by :
(a) George Dantzig
(b) John Von Neumann \& Morgenstern
(c) A.L. Lang \& A.P. Doig
(d) None of these

SECTION - B

Note : Attempt any five questions. Each question carries
2 marks.
$5 \times 2=10$
Q. 2. Very short answer type (25-30 words) :
(i) Define pay-off matrix.
(ii) Write the limitations of PERT.
(iii) Write notes on Total float.
(iv) Write dominance rule in game theory.
(v) Define all integer \& mixed integer programming problem.
(vi) Define convex \& concave in terms of Hessian.
(vii) Define multistage decision problem.

(5)
 SECTION - C

Note : Attempt any five questions. Each question carries
4 marks.
$5 \times 4=20$
Q. 3. Short answer type (250 words) :
(i) Solve the following 2×4 games by graphical method : Player B

Player A ${ }_{1}{ }_{2}\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 3 & 3 & 4 & 0 \\ 5 & 4 & 4 & 7\end{array}\right]$
(ii) Prepare a network diagram for the following information :

Activity	A	B	C	D	E	F	G	H
Immediate Predecessor	-	-	A	A, B	A, B	C	D, F	E, G

(iii) Draw algorithm of Branch \& Bound technique.
(iv) Obtain the set of necessary conditions for the NLPP :

Minimize $Z=3 x_{1}^{2}+x_{2}^{2}+2 x_{1} x_{2}+6 x_{1}+2 x_{2}$
(6)
subject to the constraints
$2 x_{1}-x_{2}=4, x_{1}, x_{2} \geq 0$
(v) Use Beale's method for solving the following quadratic programming problem :
Max $Z=10 x_{1}+25 x_{2}-10 x_{1}^{2}-x_{2}^{2}-4 x_{1} x_{2}$ subject to
$x_{1}+2 x_{2}+x_{3}=10, x_{1}+x_{2}+x_{4}=9$ and x_{1}, $x_{2}, x_{3}, x_{4} \geq 0$
(vi) Find the shortest path from node 1 to 9 of the distance network using Dijkstra's algorithm :

(vii) Calculate the value of game and probability of playing each strategy in following game theory matrix :

B | | A | |
| :--- | :--- | :--- |
| 30 | 40 | 60 |
| 35 | 42 | 11 |

SECTION - D

Note : Attempt any three questions. Each question carries 10 marks.
$3 \times 10=30$
Q. 4. Essay type questions (more than 500 words) :
(i) Solve the following L.P.P. by Gomory technique :

Maximize $Z=3 x_{2}$
subject to the constraints

$$
\begin{aligned}
& 3 x_{1}+2 x_{2} \leq 7 \\
& x_{1}-x_{2} \geq-2 \\
& x_{1}, x_{2} \geq 0 \text { and are integers. }
\end{aligned}
$$

(ii) Use dynamic programming to show that :
$-\sum_{i=1}^{n} p_{i} \log p_{i} \quad$ subject to $\sum_{i=1}^{n} p_{i}=1$
is
maximum when $\mathrm{p}_{1}+\mathrm{p}_{2}+\ldots \ldots+\mathrm{p}_{\mathrm{n}}=\frac{1}{\mathrm{n}}$.
(iii) A project schedule has the following characteristic :

Activity	$1-2$	$1-3$	$2-4$	$3-4$	$3-5$	$4-9$	$5-6$	$5-7$	$6-8$	$7-8$	$8-10$	$9-10$
Time (days)	4	1	1	1	6	6	4	8	1	2	5	7

By this information :
(1) Construct a network diagram.
(2) Compute earliest event time \& latest event time.
(3) Determine the critical path \& total projection duration.
(4) Compute total, free and independent float for each activity.
(iv) Solve the following NLPP :

Maximize
$Z=f(x)=\left(200 x_{1}-2 x_{1}^{2}\right)+\left(500 x_{2}-3 x_{2}^{2}\right)$
subject to the constraints
$2 x_{1}+x_{2} \leq 140,2 x_{1}+3 x_{2} \leq 180 \& x_{1}, x_{2} \geq 0$

D-5343

